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ABSTRACT

A statistical model of the moon's surface roughness
is used in an attempt to explain the deviations of the observed
gross infra-red thermal emisslve properties of the moon from
those characterizing a smooth Lambertian surface. Comparison
of theory and experiment suggests that the thermal brightness
variation across the full moon disc is affected by large scale
relief of rms slope 10-20°. The method requires development of
a self shadowing theory of random rough surfaces which may be
used, in a different context, to determine local rms surface
slope from the amount of shadow visible in a moon photograph.
Tt 1s suggested that this technigue may be particularly useful
in the rapid analysis of Lunar Orbiter photography. Analysis
of an earth-based photograph of a typical highland region yields
9° for the rms slope of large scale roughness. The rms slopes
deduced agree with those found in radar studies of the moon.
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LUNAR SURFACE ROUGHNESS, SHADOWING AND THERMAIL EMISSION

INTRODUCTION

The surface of the moon is rough, both microscoplcally
as deduced from photometric studies [Hopfield, 1966] and on the
large scale as observed through telescopes, and various theoret-
ical models have been constructed to incorporate the effect of
surface roughness in the interpretation of lunar remote sensing
experiments. A statistical description of the surface in terms
of a density function of height deviations from a mean spherical
moon has been particularly useful in an understanding of the
lunar radar backscattering properties [Hagfors, 19647]. An
attempt is made in this paper to extend the use of the statisti-
cal model to examine the effect of surface roughness on the
overall emission of thermal radiation and the casting of shadows
in sunlight.

The model describes the moon as a smooth sphere upon
which are superimposed positive and negative undulations of
height generated by a stationary random process. Locally the
underlying surface may be considered plane, coinciding with the
Zz=0 plane of a cartesian coordinate system. The density of
surface height deviations (&) from the mean plane in the z
direction is described by a continuous probability function
Pl(g), of zero mean, chosen to be Gaussian for computational

ease, where the probability'of finding a height deviation within
the range Ag about g is:

1 e-g2/202
(2m)1/? 4

P (g) A = ¥: (1)

and ¢ 1s the root mean square height deviation. The horizontal
scale of the relief is contained within an autocorrelation
function p(r), defined by:

p(r) = <g(R+tr) + &(R)> (2)
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where R and r are vectors lying in the mean plane and the
average is taken over all R. p(r) is independent of the direc-
tion of r for an isotropic surface. Higher dimensional density
functions and their appropriate correlation matrices may be
derived from the autocorrelation function p(r) [Middleton, 1960].
In particular, the joint density function of surface slopes

p (=23z/3x) and q (=3z/3y) for the Gaussian surface described by
equation 1 is:

P22(p,q) e = P2(p)‘P2(Q) (3)

2TW

where w2, the mean square surface slope, is [-p''(0)], the primes
denoting double differentiation with respect to r.

Each infinitesimal element of the surface can absorb,
reflect and emit radiation, and possibly shadow its fellows, and
the behavior of the surface as a whole is the summation of
elemental contributions.

SHADOWING THEORY

Geometrical self-shadowing of the surface presents the
greatest analytical difficulty and will be discussed first, with
an approach essentially similar to that used in a recent paper
by Wagner [1966], suggested by Beckmann [1965]. The problem is
the following: what is the probability S(go, P, 9> ) that a

point F on a random rough surface, of given height go above the
mean plane and with local slopes Pys 4, will not lie in shadow

when the surface is illuminated with a parallel beam of radiation
at an angle of incidence 6 to the mean plane? Figure 1 illus-
trates a section through the surface. The origin of coordinates
is taken in the mean plane below F and the axes oriented with the
incoming beam lying in the x=0 plane. Only parts of the surface
in this plane to the right of F can shadow F, and S(go, po, of

or S(F,6) for short, is equivalent to the probability that no
part of the surface to the right of F will intersect the ray FS.
This in turn, may be written as the limit:

o° e)>

L

S(F,8) = Tiz} S(F,6,7) (1)
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where S(F,6,t1) is the probability that no part of the surface
between y=0 and y=t1 will intersect the ray FS. A differential
equation for S(F,6,t) may be developed thus:

S(F,e,t+At) = S(F,0,1) - Q(at|F,8,1) (5)

where now Q(At|F,6,t) is the conditional probability that the
surface will not intersect FS in the interval At given that it
does not in the interval 1. Turning this around and suppres-
sing the functional dependence upon F,8:

Q(ATlF,e,T) =1 - g(t)AaT (6)

where g(t)At is the conditional probability that the surface in
At will intersect the ray FS given that it does not in the

interval 1. Equation 5 now becomes, again suppressing explicit
F and 6 dependence:

S(t+at) = S(t) « {1 - g(t)at} (7)

Expanding S(t+At) about 1 in a Taylor Series to first
order in At leads to the differential equation:

ds(rt) _
R g(t) + S(v) (8)

which may be integrated to yield:

S(t) = S(0)exp ({ - g(t)dr (9)
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S(0) will clearly be unity if q, is less than cot 6 and zero
otherwise, so S(0) = h(u—qo), where h is the unit step function

and u=cot 6. Equation 4 now becomes:

S(F,6) = h(u-q Jexp( - g(t)dr (10)

The heart of the task lies in the evaluation of g(rt)
and the subsequent integration over t. Instead of an attempt
at a complete analysis g(t) will be approximated by replacing
g(t)At with the conditional probability that F will be shadowed
by the surface in At given that it is not shadowed by the sur-
face at y=t. (This avoids the difficulty of including the
effects of correlation between points on the surface in At and
the infinity of points in t.)

If the surface at 1 does not shadow F,

g(r) < g  + wrt (11)

symbolically denoted as circumstance a.

Q(T)s

"

If the surface in At does shadow F, and q

g(r) < gy +wur 5 glrtar) > g+ p(t+at) 3 q > u (12)

that is: &(t) must lie in the interval (q-u)At below £, * ut,

and q > u, denoted as circumstance g. g(t)at is just the con-
ditional probability that g will occur gilven a, OI:

g(r)at = P(8|a) (13)
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A well known relationship in probabllity theory links P(Bla)
with P(a,B) and P(a), respectively, the probability of o and B8
occurring independently and the probability of a occurring by
itself:

P(a,B) = P(Bla) + P(a) (14)
therefore,
_ P(a,B)
g(t)ar = Plo) (15)

If P3(€,q|F,r) is the joint probability density

function of £ and q at y=1 conditional upon given height and
slopes at F, then from the meaning of circumstances o and B8,
equations 11 and 12,

P(Q,B) = At dq (q_U) [P3(£’QIF;T)]E = go + ut (16)
u
and
+ o ,£O+ur

P(a) = jf dq jf dg P3(£,q|F,T) (17)

and so

AT f dQ(q—U) [P3(£,QIF,T)] €=€O+UT

g(t)ar = K (18)

+o €0+u'r
dq f ag P3(£>Q|F3T)
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where the rencormalization effected by the denominator allows
for the condition that £(t) is known to be < Eo + ut.

With known distribution and autocorrelation functions
the integrals in equation 18 may be evaluated in full, but this
is a tedious process and not illuminating. Great simplicity is
gained by neglecting correlation between the height and slopes
at F and those at y=t. The conditional density function in
this case reduces to a product of simple Gaussian functions:

1 e—52/2c2—q2/2w2

P3(£,Q|F:T) = Pl(E)PZ(Q) = DmoW (19)
and within this approximation equation 18 becomes:
2
_ (EO+uT)
WM 4 e 20
g(t) = G (20)
cl 2 - erfc )]
/20
where erfc 1s the error function complement and:
172 2 2
20(w) =((§] L H T A erfc<u/f2'w>) (21)

The integration over t (equation 10) is now simple and leads
to:

1A
S(F,e) = S(go,po,qo,e) = h(u-qo)[l - 1/2 erfc(go//2o)] (22)

Two further distributions may be deduced from S(F,8): the
probability of F not being shadowed, independent of Eo’ which

is:
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h(u-q )
S(p,>q,58) = S(8,50>9,50) Pr(£) A8, = oy (23)

and the probability that a point on the surface will not be
shadowed, independent of height and slope, S(6):

+ o 4+ + o
S(e) = Jf dg J( dpojr quPl(gO)PZ(pO)PZ(qO)S(go,po,qo,e)

[1 - 1/2 erfe(u/V2w)]
= (24)
[aCu) + 1]

The expression for S(e) is compared in Figure 2 with
that derived by Brockelman and Hagfors [1966] from a computer
simulation of an illuminated Gaussian random rough surface;
good agreement is achieved between present theory and 'experi-
ment'. Wagner [1966] does not use the device of renormaliza-
tion, equation 18, and instead includes correlation directly
in the form of a Gaussian autocorrelation function to evaluate
the conditional probability function P3(g,q|F,r). He 1is forced

to approximate the integral over 1, equation 10, and at the
expense of analytical complexity in fact galns a closer agree-
ment with the simulation. Equation 24 provides an adequate
approximation for the present purpose, and as will be seen
later contains an advantage in satisfying a self-consistency
condition. Recalling the salient result of shadowing theory
which will be needed subsequently: the probability that a
point on the surface with local slopes p,q will be illuminated
by a beam of incldence angle ¢ 1is:

S(p,q,6) = hlu - 9) S(q,6) (independent of p) (25)
(aCu) + 1]

where the subscripts have been dropped from p and q.
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OPTICAL SHADOWING

A measurement of the fraction of a rough surface
visibly illuminated yields S(6) directly and would provide an
experimental means of Investigating the statistical parameters
of the surface; in the case of a Gaussian surface it would
allow a determination of the rms slope. To explain the method
shadowing theory must be developed further. Figure 3a illus-
trates a section of a rough surface illuminated from the right.
SA 1s a surface element at F with local normal FN; FV is normal
to the mean plane and FS is the illuminating ray. FK is the
direction to a distant observer, and for simplicity it will be
assumed that FK lies in the plane of illumination, defined as
that plane containing FV and FS. The visibly illuminated area
of the whole surface projected onto the plane perpendicular to
the direction of view is:

X e “
f/ dA J(p,q,6,¢) cos KFN = fj dxdy J(p,q,e,¢) oS KIN
cos VEN
surface mean
plane
(26)

where p,q are the local slopes at F and where J is a function
having the value unity if §A can be seen to be illuminated and
zero otherwise. Integration over a large area Ao in the mean

plane 1is equivalent to taking an average over the distribution
of illuminated facets (invoking the ergodic theorem) and so:

projected
illuminated = dq P, p)P (a)T(p,q,6,4) cos KFN
arca cos VFN

= fA_ cos ¢ (27)

where f is the fraction of the total projected area illuminated
and T(p,q,6,¢) is the probability that a point with slopes p,q
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will not be shadowed for either of the ray directions FS or FK.
It is necessary to consider three distinct ranges of ¢, and the
sign convention will be used in which angles measured toward
the source of illumination are to be positive.

(a) ¢ > 8

The joint probability T may be decomposed into the
product of a conditional and a joint probability:

T(p,3,0,¢) = T(p,qa,8|¢) T'(p,q,¢) (28)

where T(p,q,6,|¢) is the probability that the surface does not
obstruct the ray FS given that it does not obstruct FK, and
T'(p,q,¢) is the probability that the surface does not obstruct
FK. T is necessarily equal to unity if ¢ > o, and T' simply
S(a,¢); thus:

T(p,a,6,¢) = S(a,¢) = h(y - q) G(p) (29)

where

1

uw = cot ¢ and G(p) = ————
CaCu) + 1]

(b) 0 < ¢ < 8

An argument exactly parallel to (a) in which the
roles of ¢ and ¢ are interchanged leads to:

T(p,a,6,¢) = S(q,8) = h(u - q) G(u) (30)

where, as before, u = cot 6.
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(c) ¢ <0

In this case it may be assumed to a good approximation
that the shadowing functilions for 8 and ¢ are independent, then T
decomposes into the product:

T(p,q,6,¢) = S(a,8) « S(q,9¢)

h(u-g) h(u+q) G(u) G(u) (31)

Using (a), (b) or (c) the integral in equation 27 may
be evaluated and for cases (b) and (c¢) it yields:

(b) £ =3S(8) « {1 - w/u}r + vy (32)
or
(£ = w/u) o gy (33)
(1 - u/u)

(c)

£ = S(8)«G(p)-{1l+u/p} + G(u) - {1-G(n)}

= (u/w)+G(w) (34)

If the observer views the surface away from grazing angle,

(W % w), G(u) is close to unity and equation 34 becomes:

£ =8(8){1 + u/u} - u/u (35)
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(a result of similar form to equation 32 which could equally
well have been deduced by replacing S(q,¢) by unity in the
expression for T(p,q,0,¢), equation 31), and:

S(e) = Sf_i'_“/g)_ (36)
(L + u/u)

where the sign change reflects the sense of the angle of
observation. If, as well, fu >> u, i.e., |¢| << o, both
expressions reduce to the simple form

£ = S(e) (37)

If 8=¢, then equation 32 reduces to f=1, demonstra-
ting that:

dA J(p,q,6,0) cos KFN = Ay cos o (38)

surface

which expresses the selfconsistency condition mentioned earlier,
that the visible area of a rough surface projected onto the
plane perpendicular to the direction of view is independent of
the roughness and equal to the projected area of the underlying
mean plane, as indeed 1t must be. Here lies the advantage of
equation 25 over the equivalent expression of Wagner [1966].
With the form of S(g,6) derived in this paper equation 38 is
satisfied identically, not approximately. The selfconsistency
condition also ensures that f=1 for ¢>6, (case (a)).

The condition imposed upon the orientation of the
direction of view in the plane of illumination may be relaxed
at the cost of greater care in the analysis of the joint prob-
ability function T(p,q,6,¢). Here attention will be restricted
to the regime where equations 33 and 36 are valid. On the moon
this 1limits observation to the equatorial region and a measure-
ment of the shadows cast in sunlight allows, within the model,
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a direct determination of the rms slope of local surface rough-
ness on the scale of resolution of the photographs used. S(¢).
calculated according to equations 33 and 36 from measurements
of the proportion of area shadowed in atlas photographs [Kopal,
1965] of a highland area north of Julius Caesar crater [15°E,
5°N], is displayed in Figure 4, with theoretical curves calcu-
lated for various values of the rms slope w. Statistical
uniformity of the surface across the region examined

(v 180 x 180 km2) was assumed and the effect of varying sun
angle deduced from different north-south strips of the same
photograph. Included in the diagram is a point taken from a
shadow analysis 1in a highland region near the crater Argelander
[5°E, 15°S] made in a different connection by Watson, et al
[1961]. Comparison with theory suggests an rms slope of ~ 9°,
which if typical of large parts of the moon compares well with
the value of ~ 10° deduced from radar studies [Evans and
Hagfors, 1966] for structure of greater than meter scale.

While of interest in connection with earth-based
lunar photographic studies it is suggested that shadow analysis
may be useful also in estimating meter scale surface roughness
from high resolution Lunar Orbiter photography which would pro-
vide a means for the rapid screening of photographs during the
process of selection of a site for an Apolio landing.

INFRA-RED EMISSION STUDIES

Observers of the infra-red emission of the moon have
noticed two phenomena which are conventionally attributed to
surface roughness. Pettit and Nicholson [1930] and, more
recently, Ingrao, Young and Linsky [1966] observed the change
of infra-red brightness across the equatorial belt of the full
moon disc and found that the brightness decreased more slowly
than the cosine of the angle of observation which would be ex-
pected for a spherical Lambertian surface. Sinton [1962] who
measured the brightness of the subsolar point over g lunation
noticed an angular dependence of the brightness not given by a
spherical Lambertian surface. An attempt will be made to
interpret both these observations in terms of surface roughness
of a scale below the resolution of the detector.

Each surface element of the rough moon is assumed to
be a perfect Lambertian emitter of thermal radiation at the
wavelengths concerned. Heat flow through the surface is neg-
lected (a good approximation during the lunar day) and energy
balance for the surface element used to equate absorbed sun-
light with radiated thermal energy. The contribution to the
radiation incident on an element emitted or reflected by its
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fellows is neglected, as is any angular dependence of the
absorption coefficient. Emissive and absorptive properties

are assumed uniform across the surface, a section of which 1s
illustrated in Figure 3b illuminated from vertically above and
observed at a distance from the direction FK. The total energy
absorbed and hence radiated by the element §A is proporftional

to S§A cos V%N, and that reaching the observer proportional to:
§A cos VFN cos NFK [J(p,q,6,¢)]1,_g (39)

The total radiation, E, reaching the observer from
the surface is:

E « dxdy cos NFK J(p,q,0,9) (40)

mean
plane

Averaging over the surface, dividing by the projected area and
normalizing gives the observed brightness, BA(¢),

+ + oo

B,(0)
A [1-q tan ¢]
B,(¢) = dpdag P,(p)-P,(q) S(a,¢)
A T J[w . 2 2 (1+p2+q2)l/2
(41)
where
coSs V%N = 5 1 5170
(L +p~ +qa”)
cos NFK = -S°08 ¢ - @ sin ¢

(1 + p2 + qz)l/2
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and

+o +o
1
I = dp dqg P,(p) P,(q) (42)
jiw j(w ° ° [l+p2+q2]l/2

BA(¢) calculated numerically from equation 41 for various values

of surface rms slope w is shown as a function of ¢ in Figure 5,
upon which are superimposed the experimental findings of Sinton
[1962] for the brightness of the subsolar point.

The change of brightness across the full moon disc
requires slightly different analysis. In Figure 3c an element
of the surface is illustrated, illuminated and observed from the
same angle ¢. Arguments similar to those preceding equation 40
lead to an expression for the radiated energy reaching the ob-
server from the whole surface:

2 -~
E « _/]r dxdy EQE——QEE-J(p,q3¢,¢) (43)
cos VFN

mean
plane

The apparent brightness of the surface as a function of the
angle of incidence 1is just:

BB(O) cos ¢
Bg(¢) = T

+ +
2
. [1-g tan ¢]
dpdq P.(p) P,(q) S(a,¢)
J(m J(m 2 2 (14p24q2) 172

(i)

Values of BB(¢) computed from equation 44 are displayed in

Figure 6, compared with the experimental observations of
Ingrao, et al [1966].
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In each case 1t is seen that theory explains the
qualitative features of the observations. The limbs of the
full moon disc are brighter than expected for a smooth sphere,
because the collection of randomly oriented facets provides an
array radiating in the direction of the observer more effi-
clently than the equivalent smooth surface. Conversely the
subsolar point is less bright than expected, for an analogous
reason.

Both BA(¢) and BB(¢) approach limits as ¢ - n/2:

+ ©
B</2)=B<o)£31’)—l/—2- d dg P.(p) P, (q) —3
AVT A Tw N P ; q ToiP) Fold (L+p2tq2]L/?
(45)
ind
Lim _
Lin g (w/2) = B,(0) (46)
1/2 2
_ (2n) q
Bo(n/2) = B,L(0) dq P (p) P (q)
B B f [ [l+p2+q ]1/2
(47)
and
ZINEIN SRR PP

Quantitative agreement of theory and experiment is
satisfactory in one case but less so in the other. If the
model can be trusted it appears that infra-red thermal bright-
ness across the full moon disc is affected primarily by the
large scale structure of rms slope 10-20°. The model correctly
predicts that the brightness should not fall to zero at the
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limb, a feature of the experimental results. Agreement with
the measurements of Sinton [1962] is quantitatively poor, but
to approach them it seems necessary to invoke a high degree
of roughness, small scale structure with 60-~70° rms slope, to
explain the marked darkening of the subsolar point at the
limb. It is not obvious why there should be this discrepancy.

The possibility of the presence of extreme roughness
suggests that to describe the physical situation more closely
the model should be improved to include the illumination of a
facet by radiation reflected and emitted by those adjacent; as
Sinton [1962] has pointed out the 'valleys' will then be hot-
ter than the 'peaks' and the apparent brightness dependent
upon the proportion of each visible. In addition, a complete
theory should take account of the whole range of roughness in
a coherent way rather than divide structure into two classes,
the one of microscoplc scale responsible for producing the
Lambertian behavior assumed to be characteristic of the other
coarser relief, a separation made implicitly in this paper.

Bed. k.

1014-BGS~jdc B. G. Smith



BELLCOMM, INC.

REFERENCES

Beckmann, P., Shadowing of random rough surfaces, IEE Trans. on
Antennas and Propagation, Ap 13, 384-388, 1965.

Brockelman, R. A., and T. Hagfors, Note on the effect of shadow-
ing on the backscattering of waves from a random rough

surface, IEE Trans. on Antennas and Propagation, AP 14,
621-626, 1966.

Evans, J. V., and T. Hagfors, Study of radio echoes from the
moon at 23 centimeters wavelength, J. Geophys. Res., 71
(20), 4871-4889, 1966.

Hagfors, T., Backscattering from an undulating surface with
applications to radar returns from the moon, J. Geophys.
Res., 69 (18), 3779-3784, 1964.

Hopfield, J. J., Mechanism of lunar polarization, Science, 151,
1380-1381, 1966.

Ingrao, H. C., A. T. Young, and J. L. Linsky, A critical
analysis of lunar temperature measurements in the infra-
red, Chapter 10 in The Nature of the Lunar Surface,
Proceedings of the 1965 IAU-NASA Symposium, editea by
W. N. Hess, D. H. Menzel and J. A. O'Keefe, The Johns
Hopkins Press, Baltimore, 1966.

Kopal, Z., plates XXXVIII and CXV of Photographic Atlas of
the Moon, Academic Press Inc., New York, 1965.

Middleton, D., Chapters 7 and 8 in Introduction to Statistical
Communication Theory, McGraw-Hill Book Co., Inc., New
York, 1960.

Pettit, E., and S. B. Nicholson, Lunar radiation and tempera-
tures, Astrophys. J., 71, 102-135, 1930.

Sinton, W. M., Temperatures on the lunar surface, in Physics
and Astronomy of the Moon, edited by Z. Kopal, Academic
Press Inc., New York, 1962.

Wagner, R. J., Shadowing of randomly rough surface, T. R. W.
Systems Report T401-6012-R0000, 1966.



BELLCOMM, INC.

References (continued)

Watson, K., B. C. Murray, and H. Brown, The behavior of
volatiles on the lunar surface, J. Geophys. Res., 66 (9),



MEAN

o\ |
\

FIGURE |

SECTION OF A RANDOM ROUGH
FROM S.

1|
B —_t

SURFACE ILLUMINATED



006

*{9961) S¥049VH
ANV NVWI3X00¥8 40 HOILVINWIS IHL HLIM (8)S
NO1LONNS ONIMOGYHS TVOIL3YOIHL IHL 40 NOSI¥VAWOD Z 3¥N9I4

~—— (9 - ,06) ITONV ONIZVYD

004 009 00€ 00l

NOILVINKIS SY¥OJOVH ANV NVWIINIO0Y¥E — — — —

AY03HL LN3IS3¥d

08§ Ul ~ M
0SE Uel ~ M
o0 ueyl ~ M

o8 Uel ~ M

£ O o

0

9°0

8'0

01

(6) s



FIGURE 3a PART OF A RANDOM ROUGH SURFACE ILLUMINATED
FROM S AND OBSERVED FROM K.

S|V

FIGURE 3b PART OF A RANDOM ROUGH SURFACE ILLUMINATED
FROM VERTICALLY ABOVE AND OBSERVED FROM K.

FIGURE 3c PART OF A RANDOM ROUGH SURFACE BOTH ILLUMINATED
AND OBSERVED FROM K.
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